Администрация муниципального образования Аркадакского муниципального района Саратовской области Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №2 города Аркадака Саратовской области

«Рассмотрено»	«Согласовано»	«Утверждаю»
Руководитель ШМО учителей	Заместитель директора по УВР	Директор МБОУ-СОШ №2
Физики, математики и информатики	МБОУ-СОШ №2 города Аркадака	города Аркадака Саратовской области
	Саратовской области	1
		/Кравцова З.В./
/Ермакова Л.В/	/Фынова Н.В/	
		Приказ №
Протокол № 1	200 2022 -	«31» августа 2023 г.
от «29» августа 2023 г.	«30» августа 2023 г.	, , , , ,

РАБОЧАЯ ПРОГРАММА

по учебному предмету «Физика» для 9 а,6 классов на 2023 - 2024 учебный год. Количество учебных часов в неделю - 3 ч, за год-102 ч.

Учитель: Круглова Марина Николаевна, первая квалификационная категория

Программа составлена на основе авторской программы основного общего образования по физике 7-9 классы А.В. Перышкина , Н.В. Филонович, Е.М. Гутник (Физика. 7-9 классы: рабочие программы / сост. Е.Н. Тихонова - 5 -е изд., перераб. - М.: Дрофа, 2015).

Год составления рабочей программы - август 2023года

Разработчики программы:

Фынова Наталья Викторовна, учитель физики и математики МБОУ-СОШ №2 города Аркадака Саратовской области, высшая квалификационная категория. Круглова Марина Николаевна, учитель физики МБОУ-СОШ№2 города Аркадака Саратовской области, первая квалификационная категория

I. Пояснительная записка.

Рабочая программа по физике для 9-х классов составлена в соответствии с требованиями к результатам основного общего образования. Программа конкретизирует содержание предметных тем, предлагает распределение предметных часов по разделам курса, последовательность изучения тем и разделов с учетом межпредметных связей, логики учебного процесса, возрастных особенностей учащихся. Определен также перечень демонстраций, лабораторных работ и практических занятий. Реализация программы обеспечивается нормативными документами:

- 1. ФГОС ООО (утвержден приказом Министерства образования и науки Российской Федерации от 17.12.2010 № 1897);
- 2. Основной общеобразовательной программой МБОУ-СОШ №2 города Аркадака Саратовской области
- 3. Учебный план МБОУ-СОШ №2 города Аркадака Саратовской области;
- 4. Календарный учебный график МБОУ-СОШ №2 города Аркадака Саратовской области;
- 5. Примерная программа основного общего образования: «Физика» 7-9 классы (базовый уровень) и авторской программы Е.М. Гутника, А.В. Перышкина «Физика» 7-9 классы.- Москва: Дрофа, 2015.

Для реализации данной программы используется учебно-методический комплекс под редакцией *Перышкина А.В*:

Состав УМК:

- 1. Лукашик В. И. Сборник задач по физике для 7-9 классов обшеобразовательных учреждений / В. И. Лукашик, Е. В. Иванова. М,: Просвещение, 2010.
- 2. Физика 9 класс. А.В. Перышкин: Учеб. Для общеобразовательных уч. М.: Дрофа, 2013.
- 3. Сборник задач по физике для 7-9 классов общеобразовательных учреждений/ А.В. Перышкин. М.: Дрофа, 2015

Изучение физики в основной школе направлено на достижение следующих целей:

- развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
- формирование у учащихся представлений о физической картине мира.

Достижение этих целей обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с

использованием измерительных приборов, широко применяемых в практической жизни;

- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Содержание учебного предмета физика способствует реализации программы развития универсальных учебных действий обучающихся образовательной программы ОУ. Учебный предмет физика является приоритетным для формирования следующих УУД: познавательные, коммуникативные, регулятивные, личностные.

В рабочей программе спланированы уроки, на которых осуществляется проектная и учебно-исследовательская деятельность обучающихся.

Содержание учебного предмета физика способствует дальнейшему формированию ИКТ-компетентности обучающихся и освоению стратегий смыслового чтения и работы с текстом.

В структуру рабочей программы включена система учёта и контроля планируемых (метапредметных и предметных) результатов. Основными формами контроля являются: тестирование, устный опрос, лабораторные работы, письменные работы, метапредметные диагностические работы и т.д.

II. Общая характеристика учебного предмета.

В основной школе ценностные ориентиры определяются спецификой физики как науки, в качестве ценностных ориентиров физического образования выступают объекты, изучаемые в курсе физики, к которым у учащихся формируется ценностное отношение. При этом ведущую роль играют познавательные ценности, так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентации, формируемые у учащихся в процессе изучения физики, проявляются:

- в признании ценности научного знания, его практической значимости, достоверности;
- в ценности физических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как извечного стремления к Истине.

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностные ориентации содержания курса физики могут рассматриваться как формирование:

- уважительного отношения к созидательной, творческой деятельности;
- понимания необходимости эффективного и безопасного использования различных технических устройств;
- потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;
- сознательного выбора будущей профессиональной деятельности.

Курс физики обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностные ориентации направлены на воспитание у учащихся:

- правильного использования физической терминологии и символики;
- потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;
- способности открыто выражать и аргументировано отстаивать свою точку зрения.

В основе содержания обучения физике лежит овладение учащимися следующими видами компетенций: **предметной, коммуникативной, организационной** и **общекультурной**. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления (линии) развития учащихся средствами предмета «Физика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных физических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о физическом языке как средстве выражения физических законов, закономерностей и т.д.; о физическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию

умения:создавать простейшие физические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения физических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о физике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития физики на разных исторических этапах; о высокой практической значимости физики с точки зрения создания и развития материальной культуры человечества, а также о важной роли физики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

III. Описание места предмета в учебном плане.

Программа отражает содержание курса физики основной школы (7-9 классы). Она учитывает цели обучения физике учащихся основной школы и соответствует обязательному минимуму содержания физического образования в основной школе. Учебная программа 9 класса рассчитана на 102 часа, по 3 часа в неделю.

IV. Результаты освоения предмета.

Личностные результаты:

- сформирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения поставленных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных релей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты изучения курса физики в 9 классе

Выпускник научится:

- -соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- -понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- -распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- -ставить опыты по исследованию физических явлений или физических свойств тел без

использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

<u>Примечание</u>. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

- -понимать роль эксперимента в получении научной информации;
- -проводить прямые измерения физических величин: радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.

<u>Примечание</u>. Любая учебная программа должна обеспечивать овладение прямыми измерениями всех перечисленных физических величин.

- -проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- -проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- -анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- -понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- -использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.

Механические явления

Выпускник научится:

- -распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, колебательное движение, резонанс, волновое движение (звук);
- -описывать изученные свойства тел и механические явления, используя физические величины: перемещение, скорость, ускорение, период обращения, импульс тела, кинетическая энергия, потенциальная энергия, амплитуда, период и частота колебаний, длина волны и скорость ее распространения. При описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- -анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, при этом различать словесную формулировку закона и его математическое выражение;
- -различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- -решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука,) и формулы, связывающие физические величины

(ускорение, импульс тела, кинетическая энергия, потенциальная энергия, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения):

-на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

- -распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, дисперсия света.
- -описывать изученные свойства тел и электромагнитные явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- -приводить примеры практического использования физических знаний о электромагнитных явлениях
- -решать задачи, используя физические законы (скорость электромагнитных волн, длина волны и частота света,): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

- -распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α -, β и γ -излучения, возникновение линейчатого спектра излучения атома;
- -описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- -анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- -различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- -приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Проверка знаний учащихся

Оценка устных ответов учащихся.

Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка письменных контрольных работ.

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

Оценка лабораторных работ.

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

V. Содержание учебного предмета.

Механика

Основы кинематики

Механическое движение. Относительность движения. Система отсчета. Материальная точка как модель физического тела. Траектория. Путь и перемещение.

Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения).

Скорость – векторная величина. Модуль вектора скорости.

Равномерное прямолинейное движение. Относительность механического движения.

Графики зависимости пути и модуля скорости от времени движения.

Ускорение — векторная величина. Равноускоренное прямолинейное движение. Графики зависимости пути и модуля скорости равноускоренного прямолинейного движения от времени движения.

Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Ускорение свободного падения.

Фронтальные лабораторные работы

Исследование равноускоренного движения тела без начальной скорости.

Демонстрации

- 1. Относительность движения.
- 2. Прямолинейное и криволинейное движение.
- 3. Стробоскоп.
- 4. Спидометр.
- 5. Сложение перемещений.
- 6. Падение тел в воздухе и разряженном газе (в трубке Ньютона).
- 7. Определение ускорения при свободном падении.
- 8. Направление скорости при движении по окружности.

Основы динамики

Инерция. Инертность тел. Первый закон Ньютона. Инерциальная система отсчета. Масса — скалярная величина. Сила — векторная величина. Второй закон Ньютона. Сложение сил. Третий закон Ньютона.

Свободное падение тел.

Гравитационные силы. Закон всемирного тяготения. Сила тяжести. Движение искусственных спутников. Расчет первой космической скорости.

Сила упругости. Закон Гука.

Вес тела, движущегося с ускорением по вертикали. Невесомость и перегрузки. Сила трения.

Фронтальные лабораторные работы

Измерение ускорения свободного падения.

Демонстрации

- 1. Проявление инерции.
- 2. Сравнение масс.
- 3. Измерение сил.
- 4. Второй закон Ньютона.
- 5. Сложение сил, действующих на тело под углом друг к другу.
- 6. Третий закон Ньютона.

Законы сохранения в механике

Импульс тела. Закон сохранения импульса. Реактивное движение. Устройство ракеты. Значение работ К.Э. Циолковского для космонавтики. Достижения в освоении космического пространства.

Демонстрации

- 1. Закон сохранения импульса.
- 2. Реактивное движение.
- 3. Модель ракеты.

Механические колебания и волны

Механические колебания. Свободные колебания. Амплитуда, период, частота, фаза колебаний.

Математический маятник. Формула периода колебаний математического маятника.

Колебания груза на пружине. Формула периода колебаний пружинного маятника.

Превращение энергии при колебательном движении. Вынужденные колебания. Резонанс.

Распространение колебаний в упругих средах. Механические волны в однородных средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой).

Звуковые волны. Звук как механическая волна. Скорость звука. Громкость и высота звука. Эхо. Акустический резонанс. Ультразвук и его применение.

Фронтальные лабораторные работы

Исследование зависимости периода и частоты колебаний математического маятника от его длины.

Демонстрации

- 1. Свободные колебания груза на нити и груза на пружине.
- 2. Зависимость периода колебаний груза на пружине от жесткости пружины и массы груза.
- 3. Зависимость периода колебаний груза на нити от ее длины.
- 4. Вынужденные колебания.
- 5. Резонанс маятников.
- 6. Применение маятника в часах.
- 7. Распространение поперечных и продольных волн.
- 8. Колеблющиеся тела как источник звука.
- 9. Зависимость громкости звука от амплитуды колебаний.
- 10. Зависимость высоты тона от частоты колебаний.

Электромагнитные явления

Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Магнитное поле. Однородное и неоднородное магнитное поле. Магнитное поле тока. Направление тока и направление линий его магнитного поля. Правило буравчика.

Правило левой руки. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. *Сила Ампера и сила Лоренца*. Электроизмерительные приборы.

Явление электромагнитной индукция. Опыты Фарадея. Магнитный поток.

Электромагнитные колебания. *Колебательный контур*. Переменный ток. Электрогенератор. Трансформатор.

Преобразование электроэнергии в электрогенераторах. Передача электрической энергии на расстояние. Экологические проблемы, связанные с тепловыми и гидроэлектростанциями.

Электромагнитное поле. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. Принципы радиосвязи и телевидения. Влияние электромагнитных излучений на живые организмы.

Свет — электромагнитная волна. Закон преломления света. Дисперсия света. *Интерференция и дифракция света*.

Фронтальные лабораторные работы

Изучение явления электромагнитной индукции.

Демонстрации

- 1. Обнаружение магнитного поля проводника с током.
- 2. Расположение магнитных стрелок вокруг прямого проводника с током.
- 3. Усиление магнитного поля катушки с током введением в нее железного сердечника.
- 4. Применение электромагнитов.
- 5. Движение прямого проводника и рамки с током в магнитное поле.
- 6. Устройство и действие электрического двигателя постоянного тока.
- 7. Модель генератора переменного тока.
- 8. Взаимодействие постоянных магнитов.

Строение атома и атомного ядра

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета - и гамма-излучения. Период полураспада.

Строение атомов. Планетарная модель атома. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры. Опыты Резерфорда.

Радиоактивные превращения атомных ядер. Состав атомного ядра. Протон, нейтрон и электрон. Зарядовое, массовое числа.

Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер.

Ядерные реакции. Деление и синтез ядер. Сохранение зарядового и массового чисел при ядерных реакциях.

Энергия связи частиц в ядре. Выделение энергии при делении и синтезе ядер.

Источники энергии Солнца и звезд. Излучение звезд.

Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Влияние радиоактивных излучений на живые организмы. Методы наблюдения и регистрации частиц в ядерной физике. Дозиметрия.

Фронтальные лабораторные работы

Изучение деления ядра атома урана по фотографии треков.

Изучение треков заряженных частиц по готовым фотографиям.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.

IV. Тематическое планирование

(3 часа в неделю, всего - 102 ч., резерв - 2 часа)

% п/п	Раздел, тема	Количе ство часов	Кол-во лаборатор ных работ	Кол-во контроль ных работ	Основные виды учебной деятельности обучающихся (или основные формы внеурочной деятельности обучающихся)
1	Законы взаимодействия и движения тел	42	1	2	Наблюдать и описывать прямолинейное и равномерное движение тележки с капельницей; определять по ленте со следами капель вид движения тележки, пройденный ею путь и промежуток времени от начала движения до остановки; обосновывать возможность замены тележки её моделью (материальной точкой) для описания движения Приводить примеры, в которых координату движущегося тела в любой момент времени можно определить, зная его начальную координату и совершенное им за данный промежуток времени перемещение, и нельзя, если вместо перемещения задан пройденный путь Определять модули и проекции векторов на координатную ось; записывать уравнение для определения координаты движущегося тела в векторной и скалярной форме, использовать его для решения задач Записывать формулы: для нахождения проекции и модуля вектора перемещения тела, для вычисления координаты движущегося тела в любой заданный момент времени; доказывать равенство модуля вектора перемещения пройденному пути и площади под графиком скорости; строить графики зависимости vx = vx(t) Объяснять физический смысл понятий: мгновенная скорость, ускорение; приводить примеры равноускоренного движения; записывать формулу для определения ускорения в векторном виде и в виде проекций на выбранную ось; применять формулы для расчета скорости тела и его ускорения в решении задач, выражать любую из входящих в формулу величин через остальные.
2	Механические колебания и волны. Звук	16	1	1	Определять колебательное движение по его признакам; приводить примеры колебаний; описывать динамику свободных колебаний пружинного и математического маятников; измерять жесткость пружины или резинового шнура Называть величины, характеризующие колебательное движение; записывать формулу взаимосвязи периода и частоты колебаний; проводить экспериментальное исследование

				1	зависимости периода колебаний пружинного маятника от m и k. Проводить исследования зависимости периода (частоты) колебаний маятника от длины его нити; представлять результаты измерений и вычислений в виде таблиц; работать в группе; слушать отчет о результатах выполнения задания-проекта «Определение качественной зависимости периода колебаний математического маятника от ускорения свободного падения» Объяснять причину затухания свободных колебаний; называть условие существования незатухающих колебаний Объяснять, в чем заключается явление резонанса; приводить примеры полезных и вредных проявлений резонанса и пути устранения последних Различать поперечные и продольные волны; описывать механизм образования волн; называть характеризующие волны физические величины Называть величины, характеризующие упругие волны; записывать формулы взаимосвязи между ними Называть диапазон частот звуковых волн; приводить примеры источников звука; приводить обоснования того, что звук является продольной волной; слушать доклад «Ультразвук и инфразвук в природе, технике и медицине», задавать вопросы и принимать участие в обсуждении темы На основании увиденных опытов выдвигать гипотезы относительно зависимости высоты тона от частоты, а громкости — от амплитуды колебаний источника звука Выдвигать гипотезы о зависимости скорости звука от свойств среды и от ее температуры; объяснять, почему в газах скорость звука возрастает с повышением температуры; объяснять, почему в газах скорость звука возрастает с повышением температуры; объяснять, почему в газах скорость звука возрастает с повышением температуры; объяснять, почему в газах скорость звука от свойств среды и от ее температуры; объяснять, почему в газах скорость звука возрастает с повышением температуры Применять знания к решению задач Объяснять наблюдаемый опыт по возбуждению колебаний одного камертона звуком, испускаемым другим камертоном такой же частоты
3	Электромагнит ное поле	21	1	1	Делать выводы о замкнутости магнитных линий и об ослаблении поля с удалением от проводников с током Формулировать правило правой руки для соленоида, правило буравчика; определять направление электрического тока в проводниках и направление линий магнитного поля Применять правило левой руки; определять направление силы, действующей на электрический заряд, движущийся в магнитном поле; определять знак заряда и направление движения частицы

Записывать формулу взаимосвязи модуля вектора магнитной индукции В, магнитного поля с модулем силы F, действующей на проводник длиной l, расположенный перпендикулярно линиям магнитной индукции, и силой тока І в проводнике; описывать зависимость магнитного потока от индукции магнитного поля, пронизывающего площадь контура и от его ориентации по отношению к линиям магнитной индукции Наблюдать и описывать опыты, подтверждающие появление электрического поля при изменении магнитного поля, делать выводы Проводить исследовательский эксперимент по изучению явления электромагнитной индукции; анализировать результаты эксперимента и делать выводы; работать в группе Наблюдать взаимодействие алюминиевых колец с магнитом; объяснять физическую суть правила Ленца и формулировать его; применять правило Ленца и правило правой руки для определения направления индукционного тока Наблюдать и объяснять явление самоиндукции Рассказывать об устройстве и принципе действия генератора переменного тока; называть способы уменьшения потерь электроэнергии передаче ее на большие расстояния; рассказывать о назначении, устройстве и принципе действия трансформатора и его применении Наблюдать опыт по излучению и приему электромагнитных волн; описывать различия между вихревым электрическим и электростатическим полями Наблюдать свободные электромагнитные колебания в колебательном контуре; делать выводы; решать задачи на формулу Томсона Рассказывать о принципах радиосвязи и телевидения; слушать доклад «Развитие средств и способов передачи информации недалекие расстояния с древних времен и до наших дней» Называть различные диапазоны электромагнитных волн Наблюдать разложение белого света в спектр при его прохождении сквозь призму и получение белого света путем сложения спектральных цветов с помощью линзы; объяснять суть и давать определение явления дисперсии Наблюдать сплошной и линейчатые спектры испускания; называть условия образования сплошных и линейчатых спектров испускания; работать в группе; слушать доклад «Метод спектрального анализа и его применение в науке и технике» Объяснять излучение и поглощение света атомами и происхождение линейчатых

					спектров на основе постулатов Бора; работать с заданиями, приведенными в разделе «Итоги главы»
4	Строение атома и атомного ядра, использование энергии атомных ядер	15	2	1	Описывать опыты Резерфорда: по обнаружению сложного состава радиоактивного излучения и по исследованию с помощью рассеяния α-частиц строения атома Объяснять суть законов сохранения массового числа и заряда при радиоактивных превращениях; применять эти законы при записи уравнений ядерных реакций Измерять мощность дозы радиационного фона дозиметром; сравнивать полученный результат с наибольшим допустимым для человека значением; работать в группе Применять законы сохранения массового числа и заряда для записи уравнений ядерных реакций Объяснять физический смысл понятий: массовое и зарядовое числа Объяснять физический смысл понятий: энергия связи, дефект масс Описывать процесс деления ядра атома урана; объяснять физический смысл понятий: цепная реакция, критическая масса; называть условия протекания управляемой цепной реакции Рассказывать о назначении ядерного реактора на медленных нейтронах, его устройстве и принципе действия; называть преимущества и недостатки АЭС перед другими видами электростанций. Называть физические величины: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада; слушать доклад «Негативное воздействие радиации на живые организмы и способы защиты от нее» Называть условия протекания термоядерной реакции; приводить примеры термоядерных реакций; применять знания к решению задач Строить график зависимости мощности дозы излучения продуктов распада радона; представлять результаты измерений в виде таблиц; работать в группе
5	Строение и эволюция Вселенной	6	-	-	Наблюдать слайды или фотографии небесных объектов; называть группы объектов, входящих в солнечную систему приводить примеры изменения вида звездного неба в течение суток Сравнивать планеты Земной группы; планеты-гиганты; анализировать фотографии или слайды планет Описывать фотографии малых тел Солнечной системы Объяснять физические процессы, происходящие в недрах Солнца и звезд; называть

6	Обобщающее повторение	2	-	1	причины образования пятен на Солнце; анализировать фотографии солнечной короны и образований в ней Описывать три модели нестационарной Вселенной, предложенные Фридманом; объяснять в чем проявляется нестационарность Вселенной; записывать закон Хаббла Демонстрировать презентации, участвовать в обсуждении презентаций; работать с заданиями, приведенными в разделе «Итоги главы» Применять знания к решению задач
	Всего:	102	5	6	

Учебно-методическое и материально-техническое обеспечение образовательного процесса.

Литература:

1. Физика. 9 кл.: учебник для общеобразоват. учреждений/ А.В. Перышкин, Е.М. Гутник -

М.:Дрофа, 2009, 2011.

- 2. Сборник задач по физике для 7-9 классов общеобразовательных учреждений / В.И. Лукашик, Е.В. Иванова. М.: Просвещение, 2001.
- 3. Физика. 9 класс: учебно-методическое пособие/ А.Е. Марон, Е.А. Марон. М.: Дрофа, 2004.
- 4. Физика. 9 класс. Поурочные планы по учебнику А.В. Перышкина. / сост. В.А. Шевцов Волгоград: Учитель, 2004.
- 5. Генденштейн Л.Э., Кирик Л.А., Гельфгат И.М. Решение ключевых задач по физике для основной школы. 7-9 классы. М.: ИЛЕКСА, 2011.
- 6. Контрольные и самостоятельные работы по физике. 9 класс: к учебнику А.В. Перышкина, Е.М. Гутник «Физика 9 класс» / О.И. Громцева. М.: Издательство «Экзамен», 2014.
- 7. Тесты по физике. 9 класс: к учебнику А.В. Перышкина, Е.М. Гутник «Физика 9 класс» / О.И. Громцева. М.: Издательство «Экзамен», 2010.
- 8. Физика. 9 класс. Тематические тестовые задания для подготовки к ГИА. / авт.сост.: М.В. Бойденко, О.Н. Мирошкина. – Ярославль: ООО «Академия развития», 2011.
- 9. . Перышкин А. В. Сборник задач по физике. 7-9. М.: Экзамен, 2008.
- 10. Волков В.А. Поурочные разработки по физике, 9 класс. М. ВАКО, 2007.

Интернет-ресурсы

- 1. Открытый класс. Сетевое образовательное сообщество. http://www.openclass.ru/node/109715
- 2. Единая коллекция цифровых образовательных ресурсов. http://school-collection.edu.ru/catalog/
- 3. Федеральный центр информационно-образовательных ресурсов. http://www.fcior.edu.ru/
- 4. Интернет урок. http://interneturok.ru/ru/school/physics/
- 5. Газета «1 сентября» материалы по физике. http://archive.1september.ru/fiz
- 6. Анимации физических объектов. http://physics.nad.ru/
- 7. Физика 7-9 .http://www.kursk.ru/win/client/gimnhttp://www.kursk.ru/
- 8. Живая физика: обучающая программа. http://www.int-edu.ru/soft/fiz.html
- 9. Уроки физики с использованием Интернета. http://www.phizinter.chat.ru
- 10. Физика.ru. http://www.fizika.ru/
- 11. Физика: коллекция опытов. http://experiment.edu.ru/